Developing a Trainplayer Script
Most commands are preceded by a wait condition, a wait condition doesn't need to be followed by a command.

Syntax is [wait-condition] [command] A command without a wait condition executes immediately.
	Wait Conditions
	Takes effect when:
	Notes

	AT <jxn>
	centre of lead car crosses junction
	when midpoint crosses, <jxn> can have prefix j

	AT <(t j d)>
	lead car crosses (% dist d from jxn j on track t)
	this j cannot have prefix j

	AT <h:m[:s]>
	as layout clock, when clock reaches time.
	h:m required, secs optional

	AT <station>
	lead car of train enters named station
	Use "for names with spaces"

	AFTER <jxn>
	last car crosses junction , can use j prefix
	<jxn> can have prefix j

	AFTER <(t j d)>
	last car of train crosses exact spot
	this j cannot have prefix j

	AFTER <h:m:s>
	actual elapsed time, not scale time clock
	seconds are not optional

	AFTER <station>
	last car of train leaves station
	Use "for names with spaces"

	ON STOP
	wait for train to come to a complete stop
	no effect if already stopped

	ON COUPLE
	wait for train to couple with another car
	then operating longer train

	ON THROW <jxn>
	when specified switch is thrown by any means
	can throw from another script

	ON TABLESTOP
	turntable finishes rotating
	follows a rotate command

	ON KEY <key>
	user presses key, if not specified accepts any
	e.g. On Key F1, On Key A

Blank lines in a script are ignored, as are comment lines beginning with * or // or # followed by at least one space.

Comments starting with ** plus one space, instead of just *, will not echo to the schedule window.
	Commands
	Action
	Notes

	Forward
	no effect if engine is already going forward
	engine attached to script, affected by autopause <secs>

	Reverse
	no effect if engine is already in reverse
	engine attached to script, affected by autopause <secs>

	Speed <mph>
	train begins moving if stationary
	

	Stop
	decelerate to a stop
	train attached to script, affected by autopause <secs>

	Uncouple <slot>
	uncouple (1=behind 1st car, 2=behind 2nd)
	train attached to script, affected by autopause <secs>

can be unpredictable use uncouple car if possible

	Uncouple <car>
	uncouple between car and engine
	train attached to script, affected by autopause <secs>

car = car ID

	Uncouple <car> <car>
	uncouple between pair of adjacent cars
	train attached to script, affected by autopause <secs>

car = car ID

	Throw <jxn> [pos]
	throw switch (position optional)
	4,20 pos is 0 or 1

	Set <var> <value>
	set variable to value
	see advanced notes below

	<label>:
	word ending with colon is a label for goto
	Must be on a line by itself.

	Goto <label>
	jump to statement after label
	

	Autopause <secs>
	pause for <secs> on specified events
	use autopause 0 to cancel

	Echo <string>
	display string in schedule window
	quotes not required

	Rotate <ttbl> <jxn>
	rotate turntable to specified junction
	<ttble> is ID # of turntable

	Train <train>
	select specified train
	for <train> use "name", ID or label of any car

Menu Commands
Any command from the menu's can be used in a script. Executing a menu command from a script causes the same action as choosing it from the menu. If an item at any level consists of more than one word, the item must be enclosed in quotes. Popup menu items are available also, Car, Layout, Switch, Turntable, Track, Circle, Horn, Station.

As a shortcut, you do not need to spell out all the words in full. You may abbreviate a menu item to its first few characters. For example, "view toolbars customize" may be shortened to "vi to cu."
Menu Command Examples
	file save
	bring up File Save dialog to save the current layout

	view "zoom in"
	magnify view

	view tool cust
	bring up Tools Customization dialog

	car "add car" reefer
	insert a refrigerator car at current insert point of selected train

	tools "enable yard mode"
	turn on Yard Mode operation

	train new
	create new four-car train at default location

	window "tile horiz"
	if multiple document windows are visible, tile them

	train freight1
	select train Freight1

	train speed double
	double speed of selected train

Many menu commands do not make sense in the context of a script. Some bring up dialogs, which are not scriptable. Some duplicate functions available using Train Commands. Some are toggle switches, but since a script does not have a way to know the current setting, results are unpredictable. Context menus often need to reference a point on the layout -- where you right-clicked to bring up the menu -- but since a script cannot supply this, context menus may do nothing or work unpredictably.
Subroutines in Scripts
A subroutine is a series of script commands to be executed from within another script.

Subroutines are stored as text files in a special folder. Each filename becomes a new command in the script language.

To call a subroutine, you just supply its name, followed by any additional values, or arguments, required by the routine.

Arguments are represented within the script by placeholders, replaced by the actual values when the routine is called.

Insert spaceholders where your routine will take variables from the calling script. A spaceholder is of the form %n, where n is the position in the argument list from left to right.

For example, if your routine takes two arguments, use %1 in the code to stand for the first argument, %2 for the second.

To call a subroutine use the filename (minus extension) as a command. Follow by arguments separated by spaces. If an argument consists of more than one word, enclose it in quotes.

When the script comes to a subroutine call, it opens the file, loads it in and inserts the lines into the current script, then closes the file. The subroutine does not become attached to any train nor stay open while it is being executed.
Junction Actions are not yet available without resetting a registry switch [from v5.3 026 (7th March 2013)]
Junction Action Scripts were introduced in version 5.3, this enhancement is still under development and is not yet enabled by default to all users. To enable this facility a start switch needs to be enabled in the Windows registry.

To set this switch, start and exit the TP program (this creates a new empty value in the registry)

Start RegEdit and navigate to HKEY_CURRENT_USER\Software\TrainPlayer\TrainPlayer\Settings and edit the value JunctionActions, change this from 0 to 255.

There are actually multiple settings in this value, so in the future it could be set to allow playback but not authoring. When the value is zero, there should be no visible evidence of junction actions, no Action dialog or menu item, no processing during train movements. For full capability, set your value to 255 (or FF in hexadecimal).

Once enabled, if the track tool is active, you can right click on any track junction (i.e. connection point as opposed to just a switch) and select "Actions" from the context menu to open a dialogue box which allows you to type in a script to be activated at this point on the layout and set the conditions as to which trains will pick up and run this script.

Action points are shown on the track plan as orange circles which can be selected with a right mouse click for editing. Dragging a train by hand over a junction does not trigger the Junction Action script.
The Difference between Junction Scripts and Train Scripts
When a suitable vehicle passes in a suitable direction across a junction having a script, a temporary script is created and added to a list belonging to the layout.

This script is attached to the passing train, temporarily replacing any other script on that train, and then it is started. When it finishes executing, the train is reattached to its previous script if any, and the temporary one is discarded.
If the train is running a script when it hits the junction, the previous script is not stopped, but paused -- it will not be getting any attention while the junction script is running, but should pick up where it left off when the junction one ends.
There is actually a "stack" involved here, so that whenever a junction action gets attached to a train, it is "pushed" onto the stack, and "popped" when done. In principle this should allow junction actions within junction actions.

In practice there are ramifications to be thought about. For example if the train is in a wait state when it hits some junction action, will it terminate ok when it comes back?

The Master Script
The Master Script is also a new concept. This is a normal script stored in a text file which can be automatically attached to the selected train and executed when the layout it belongs to is first loaded. This is particularly useful for setting any variables required for the layout (see below) or for initiating any functions to start the trains (also below).

The text file containing this script can be placed in any location, it can have any name (but the same name as the layout be useful to identify it). There is not yet a mechanism within TP to write or save this file. but if the following highlighted tag is added to the layout definition in the relevant rrw file the master script will be found and executed as soon as the layout is opened.

<layout name="mylayout" scale="3" script="E:\mylayout.txt" bitmap="" descr=...>

The tag will accept a full pathname or a relative pathname (e.g. to the scripts folder), or if no path is included it will look for the file in the same folder as the layout it refers to is located.

It is intended to introduce a more user friendly way of writing, editing and saving this Master Script but it is currently available in this form for testing.
Setting and using Variables
Variables are created and set using SET commands, and can be tested using IF.

Previously variables could only be a name from hkcu\Software\TrainPlayer\TrainPlayer\Settings, and the value being the type accepted by that variable. Details were never documented. Most are true/false (1/0), strings, or numeric values.

The SET function has now been extended to also allow user variables. A user variable can be given any name, but preferably without spaces Any string value can be assigned, matches on names and values are case-insensitive.

The SET command takes a name and a value. Previously the name had to match an entry in the TP reg settings. This is no longer the case. If SET gets a variable name it doesn't know about, it creates a global variable, to which you can then assign values. Examples:

SET AccelFactor 20 ... sets value listed in registry settings, as before

SET myVariable 1 ... creates a new variable and assigns it a value

SET myVariable 99 ... changes the value of an existing variable

SET block23 OCCUPIED ... value does not need to be numeric

The values are not saved, they last only until you exit the program. But they are global, meaning you could set a value in one layout and reference it in another. It's up to you to make sure you do a SET on any value you later plan to test with IF. You might do a series of SET commands at the top of your main script, to make sure all variables are initialized to useful starting values. At some point we might save all variables between sessions.

Typical usage: you could assign a junction action to set some flag when some train goes by, and another script or scriptlet could then test for the value and take one of two courses of action. Details are left as an exercise to the reader.

If you wanted to sit and wait for some flag to get set, you could create a little loop like this:

TryAgain:

if myflag = OFF

 after 0:0:01 goto TryAgain
endif

Testing and using the Values from the Variables
To test the value of a variable, use IF.

IF (var = value)

 statements
ELSEIF (var = value2)

 statements
ELSEIF (var = value3)

 statements
ELSE
 statements

ENDIF
(Italics: ELSEIF and ELSE are optional)
This should work whether you use a homemade variable or a regular settings one. The = sign is required between variable name and value. Value can contain spaces without being quoted.

Every IF must be followed ENDIF -- the program doesn't do much in the way of validity checking.
IF statements can also be nested. Spaces round = are optional.
You can use parens in an IF, and you can follow the end paren with a statement (or statement list) on the same line.

Example:
if ($myvar = 1) echo "VAR is 1--LET'S GO!"; speed 20; endif
@ before a variable name is a reference, and means "contents of." the referenced variable
This allows the value of a variable to be used in place of a literal.

You can use these not only in SET and IF statements, but also wherever you supply a value in a line of script.

Before executing, each line is run through a preprocessor which substitutes actual values in place of the references.

Examples:

set myvar 22 ... create variable "myvar" and give it the value 22, as before

set newvar @myvar ... create "newvar" and assign it the value of myvar

echo @newvar ... show contents of newvar in the script window (should see 22)

if (newvar = 22) echo OK ... use literal value in IF, as before

if (newvar = @myvar) echo OK! ... compare two variables using reference in IF

echo $TIME ... show time of day, a system value (see below)

echo Working on $LAYOUT ... can embed a reference or system value among other text

References go on the right-hand side in SET statements, not on the left. You can't set the value of a system variable; a reference doesn't make sense on the left of a SET, ("SET @MYVAR = 2") -- in this case the @ is permitted but ignored. They can go on either or both sides of an IF.
$ before a variable means it is one of a fixed list of system values you can query.
The list of system variables at the moment is rather short:

$TIME

$DATE

$LAYOUT (name)

$TRAIN (name of the selected train)

$CAR (id of selected car).

$X_TRAIN (name of the train running this script, or name of train which crossed junction giving it the script)

$SPEED returns the speed of the selected train.

$KEY returns the numeric value of the last key hit on the keyboard.
These system variables are being continually updated by the program and cannot be SET by the user, however the values can be extracted to a user variable for testing or use later within the current script or in another script.
Examples of using the system variables
Example 1:
Saving current speed for reuse.
set oldspeed $speed ... squirrel away current speed
<do some operations> ... slow down and do whatever

speed @oldspeed ... resume former speed
Example 2:
Monitoring keyboard waiting for specific key press to define next action

start:

on key

echo $key

if ($key = 65)

 speed 20

elseif ($key = 66)

 reverse

elseif ($key = 67)

 stop

endif

goto start

The Drive function
The new DRIVE block directs a block of commands to a specific train. The command is followed by a train identifier (name as found on the train menu), then one or more commands, then ENDDRIVE.

Example:
speed 10

drive Train28

echo Operating Train28

speed 20

after 0:0:04 reverse

stop

enddrive

echo Operating our own train again

In this example the commands in the drive block are sent to the target train, which is started, and then control returns immediately to the calling train. In principle you can nest a "drive" within a "drive", but this is not tested.
If stopping a train at the end of one script you could use "SET savedtrain $x_train" The contents of this variable could then be used to start this same train later from within another script
Example:
Drive @savedtrain

forward

speed 10

enddrive

New Load/Unload commands for scripting.
There is a somewhat complicated format for these commands, allowing you to load or unload or toggle loads in a specified car, cut, or train, and even to specify the load itself.

Examples:
load car H33 <= load a single car with its default load

load car H33,H35 bananas <= load a list of cars with a particular load

load cut X14 <= load all cars in cut around X14

unload train <= set all cars of current train to unloaded
Key Code Reference Table
	0
	
	10
	
	20
	Caps Lock
	30
	
	40
	Arrow Down

	1
	
	11
	
	21
	
	31
	
	41
	

	2
	
	12
	
	22
	
	32
	
	42
	

	3
	
	13
	Enter
	23
	
	33
	Page Up
	43
	

	4
	
	14
	
	24
	
	34
	Page Down
	44
	

	5
	
	15
	
	25
	
	35
	End
	45
	Insert

	6
	
	16
	Shift
	26
	
	36
	Home
	46
	Delete

	7
	
	17
	Ctrl
	27
	Esc
	37
	Arrow Left
	47
	

	8
	Backspace
	18
	Alt
	28
	
	38
	Arrow Up
	48
	0

	9
	Tab
	19
	Pause/Break
	29
	
	39
	Arrow Right
	49
	1

	50
	2
	60
	
	70
	f
	80
	p
	90
	z

	51
	3
	61
	=+
	71
	g
	81
	q
	91
	Windows

	52
	4
	62
	
	72
	h
	82
	r
	92
	

	53
	5
	63
	
	73
	i
	83
	s
	93
	Right Click

	54
	6
	64
	
	74
	j
	84
	t
	94
	

	55
	7
	65
	a
	75
	k
	85
	u
	95
	

	56
	8
	66
	b
	76
	l
	86
	v
	96
	0 (Num Lock)

	57
	9
	67
	c
	77
	m
	87
	w
	97
	1 (Num Lock)

	58
	
	68
	d
	78
	n
	88
	x
	98
	2 (Num Lock)

	59
	;:
	69
	e
	79
	o
	89
	y
	99
	3 (Num Lock)

	100
	4 (Num Lock)
	110
	. (Num Lock)
	120
	F9
	130
	
	140
	

	101
	5 (Num Lock)
	111
	/ (Num Lock)
	121
	F10
	131
	
	141
	

	102
	6 (Num Lock)
	112
	F1
	122
	F11
	132
	
	142
	

	103
	7 (Num Lock)
	113
	F2
	123
	F12
	133
	
	143
	

	104
	8 (Num Lock)
	114
	F3
	124
	
	134
	
	144
	Num Lock

	105
	9 (Num Lock)
	115
	F4
	125
	
	135
	
	145
	Scroll Lock

	106
	* (Num Lock)
	116
	F5
	126
	
	136
	
	146
	

	107
	+ (Num Lock)
	117
	F6
	127
	
	137
	
	147
	

	108
	
	118
	F7
	128
	
	138
	
	148
	

	109
	- (Num Lock)
	119
	F8
	129
	
	139
	
	149
	

Page 6 of 6

